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Possible representations of semisimple groups 
SU(m,) x SU(m,) x . . . x SU(m,) for finite N = 2 
supersymmetric Yang-Mills theories 

Xiang-dong Jiang and Xian-jian Zhou 
Institute of High Energy Physics, Academia Sinica Beijing, The People's Republic of China 

Received 18 May 1984 

Abstract. In this paper we list all possible representations ofthe semisimple groups SU( m,) X 

SU( m2) X .  . . x SU( mk) for finite N = 2 supersymmetric Yang-Mills theories. 

Recently a lot of attention has been paid to the finite quantum field theories. The first 
such example is N = 4 supersymmetric Yang-Mills (SYM) theory (Gliozzi et al 1977, 
Brink et al 1977), which was first proved to be finite in the light-cone gauge formalism 
(Mandelstam 1983, Brink et al 1983). The more general cases of finite quantum field 
theories are N = 2 SYM theories with N = 2 matter multiplets provided their gauge 
coupling p function vanishes at one loop (Howe er a1 1983). The N = 2 SYM theories 
include an N = 2 vector multiplet which consists of an N = 1 vector multiplet and an 
N = 1 chiral scalar multiplet all in the adjoint representation of gauge group G, and 
several N = 2 matter multiplets each of which consists of an N = 1 chiral scalar multiplet 
in representation Ri and an N = 1 chiral scalar multiplet in representation l&. The 
vanishing of the p function at one-loop level for simple group G becomes 

where C2(G) is the value of the quadratic Casimir operator for the adjoint representa- 
tion of G, and T(Ri) is the Dynkin index of the representation Ri. Representations 
of all classical simple groups satisfying ( 1 )  are found (Koh and Rajpoot 1984) and 
the candidates for finite grand unified theories which can accommodate at least three 
generations of ordinary quarks and leptons, are discussed (Dong et a1 1984). When 
G is a semisimple group G = G I  x G 2  X. . . x G k  where G I , .  . . , Gk are simple groups, 
criterion ( 1 )  for finite N = 2 SYM theories can be easily extended to 

C,(G,) = 2 T( R\i))  x dim RY' x . . . x dim R f )  
L 

k where N = 2 matter multiplets are in the representations R") = RI" x RI'' X . . .  X R") 
and dim R is the dimension of representation R. We have found representations of 
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all semisimple classical groups G = GI XG, (Jiang and Zhou 1984) which may be 
relevant to preon models. In this paper we will find all representations of semisimple 
groups G = SU( m i )  x SU( mz)  x , , . x SU( m k )  which satisfy equation (2). We have 
worked out the SU( m , )  x SU( m2) case (Jiang and Zhou 1984). So we only discuss the 
cases of K 2 3 here. If equations (2) can be decomposed into more than one set of 
equations which are independent of each other, we call the case reducible. Every 
reducible case can be reduced into several irreducible cases where equations (2) are 
dependent on each other. We need only discuss irreducible cases. Suppose there is 
a set of representations R"' of G satisfying (2). In an irreducible case for each subgroup 
SU( m,) of G there must exist a representation R") in the set which is not a singlet for 
SU(m,) as well as at least for another subgroup SU(m, ) ,  i.e. R") and R\') are not 
singlets. When the number k of subgroups is greater than two, RJ" and RI'' can only 
be fundamental representations of SU( m,) and SU( m i  ) respectively. There is only one 
case where a representation of G is not a singlet for more than two groups. It is the 
type A in table 1, where G = SU(2) xSU(2)  xSU(2)  and only one representation 
R =Cl XU XU of G satisfying (2).  0 denotes the fundamental representation of 
SU(m).  In all other cases every representation R") in a set satisfying (2) is not a 
singlet at most for two subgroups of G, and the representations RI'' and R'," of the 
two subgroups must be fundamental representations. 

Now let us use a diagram to denote a set of representations of G satisfying (2). 
Each subgroup SU(m,) of G is denoted by a dot in the diagram and the value m, is 
written near the dot to express the subgroup is SU(m,). If there is a representation 
R(r) ,  such that R)" and I?\') are fundamental representations for subgroups SU( m,) 
and SU(m,) ,  we connect the two dots for SU(m,) and SU(m, )  by a line. There are 
still representations in the set which are non-singlets only for one subgroup. Such 

representations can only be three-rank antisymmetric representation of SU( m )  

( m  = 61, two-rank antisymmetric representation of SU(m)(  m 2 4), two-rank sym- 
metric representation m of SU( m )  ( m  2 3) and fundamental representation C of 
SU( m )  ( m  3 2) (Koh and Rajpoot 1984). We directly write down these representations 
near the dots of the corresponding subgroups SU(m,) .  So in such a diagram all 
representations in a set satisfying (2) are expressed clearly. If a set of representations 
is irreducible, its diagram is a connected one where there is no subset of dots which 
is not connected with other dots in the set. Type B in table 1 is a ring where all values 
of the dots on the ring are equal and no representation which is a non-singlet only for 
one subgroup can be added in. Furthermore, we cannot add any branch to the ring. 
Therefore the remaining types of diagrams all take tree shapes. 

A dot in a diagram with n branches is called n-branch dot. It is easy to verify that 
the only diagram with a four-branch dot is type C in table 1. A dot which has more 
than four branches cannot appear in a diagram. If there are two three-branch dots in 
a diagram, it must be type D in table 1 .  There is no diagram with more than two 
three-branch dots. There are only two types of diagram left: one-branch type E (chain) 
and three-branch type F with only one three-branch dot. 

It is easy to see that if the value of a dot is greater than the value of the next dot 
on a chain, the values of dots on the chain afterwards must decrease dot by dot. 
Therefore chains can be divided into four kinds El ,  E2, E3 and E4 listed in figure 1 
according to the change trend of the values on the chains. El is a flat type where all 
values on a chain are equal. E2 is a flat-slant one where the values on one part of a 
chain are equal, and those on another part decrease. E3 is a slant-flat-slant one where 

El 
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Table 1. All possible irreducible diagrams satisfying equations (2)t.  

A CX C of SU(2) xSU(2)  xSU(2 )  

m m 

B fl ......... 
m 

m 

m m 

m 2m 2m 2m 2m m 

m m  m m  m m  m m  
E l  - ......*- ... -.e..... - m 

e + 
2 0  

E 
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6 6  6 6  - ....... - 

6 

E2 - 
r 

6 6 6 5 4 3  -...- 
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6 6 6 5 4  

2 0  

.... P 
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Table 1. (continued) 

E 3  

6 6  6 3  -...- 
3 3 0  
‘f 
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U 2 :  

2 8  

2 4 6 4 2  
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Table 1. (continued) 
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Table 1. (continued) 

m 2 m  m - 
2 n  
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Table 1. (continued) 
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Table 1. (continued) 
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Table 1. (continued) 

3405 
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Table 1. (continued) 
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Table 1. (continued) 

(I, = Zm, - m ,  
a:= Zm,-m, - m ;  

o , = ? m L - m ,  , - n  
on = ? n  ~ m, - 1 -  I ,  
a , =  21 - n 

p ,  = 2 1 ,  - 0 - I: 
p. = 21: - 1 ,  - I /  

p, . = ? I ,  , - I ,  : - I ,  
p,  = 21, - I ,  , 

F6 

m ,  mI -... 0 . .  H 

a , O  a I = . . . a , -  a . 3  p ,C . . .P ,3  - 

t If the dots with value 6 have H I  they always may have fl+2U, or 6 0 .  For simplicity sometime we only 
list in diagrams. Similarly if the dots with value 4 have 2 H, they always may have B + 2 0 ,  or 4 0  and 
also for brevity sometimes we only list 2 8. In the same spirit when we see dots with value m have 8, 
instead they may have ( m - 2 ) U .  

E'3 E4 

Figure 1. 

some dots inside a chain have the same values and values on the two wings decrease 
monotonically. The extreme case of E3 is E'3 where no dots inside the chain have the 
same values. E4 is a slant one where values on a chain decrease from one end to 
another end. 

In order to solve equation ( 2 )  in the chain case we have to know what representations 
which are non-singlet only for one subgroup, can be added to the dots in a chain. Let 
us discuss the question in some detail. There are several kinds of dots in figure 1. We 
cannot add any representations on those dots which are inside a flat part of a chain, 
such as dots f i n  figure 1. We can only add fundamental representations on the dots 
inside a slant part of a chain, such as the dots g in figure 1. The end dots of a flat - 

part in a chain, such as dots a in figure 1, can only have ( m  = 6 ) ,  or 2 e ( m  = 4), 
- 

or ( + 2 0 )  ( m  5 4), or m U where m is the value of the end dots. The turning dots 

between a flat part and a slant part, such as dots c in figure 1, can only have 1 ( m  = 4)  

or 0 where m is also the value of the turning dots. The end dots of a slant part at 

the low end, such as b in figure 1, can have representations H and Cl. The turning 

dot d in figure 1 can have [, and Cl. The end dots e of a slant part at the upper 

end may have any allowed representations, [ ( m  = 6) ,  E, a, and 0. All possible 

diagrams of chains are listed in type E in table 1 .  
The last type F in table 1 is the three-branch diagrams. The lengths of the three 

branches cannot be arbitrary long. Type F1 is a typical example where each branch 
has two dots (not including the three-branch dot) and we cannot make any branch 
longer in type F1. 

All diagrams for G = SU( m , )  X SU( mz)  X . . . X SU( m k )  (k 2 3) which satisfy 
equations (2) are listed in table 1. We can give an example to show how to use the 
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table. For example, the first diagram of type E3 in table 1 means gauge group 
G = SU(3) x SU(6) x SU(3) and the representations R") of N = 2 matter multiplets are 

x u  x . + . x u  x n  + .x  [ X .  (. denotes singlet) 

where in addition we have to include all representations of N = 2 matter multiplets 
which are not shown in the diagram. All N = 2 matter multiplets of R( ' )  and E(') and 
the N = 2 vector multiplet in the adjoint representation of G together construct a finite 
N = 2 SYM theory. At present the cases of SU( m,) x SU( mz) x SU( m 3 )  may be relevant 
to preon models (for example see Lyons 1982). For convenience in table 2 we list 
Dynkin indexes and dimensions of those representations which are needed in our 
calculations. 

Table 2. The dimension and Dynkin index of representations of SU(m). 

~ 

Representation R ,  Dimension T(  R,  1 Range of m 

0 m 112 m Z 2  
E fm(m - 1 )  i ( m  -2)  m a 4  

0 j m ( m + l )  f (m + 2 )  m a 3  
i m ( m  - I ) (m -2)  $ ( m  -2)(m -3)  g a m 2 6  
m 2 -  I m m Z 2  

L! 

m - ~ { r  
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